skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lewis, Josh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Undergraduate mechanical engineering students struggle in comprehending the fundamentals presented in an introductory level mechanical vibrations course which eventually affects their performance in the posterior courses such as control theory. One salient factor to this is missing the visualization of the concept with hands-on learning since the vibrations and control laboratory course is offered in the following semester. This study presents the design, development of three portable and 3D-printed compliant vibratory mechanisms actuated by a linear motor and their implementation in vibrations course and vibrations and control laboratory. The proposed setups consist of flexible and compliant springs, sliders, and base support. Mechanisms are utilized to demonstrate free and forced vibrations, resonation, and design of a passive isolator. In addition to the 3D-printed, portable lab equipment, we created the Matlab Simscape GUI program of each setup so instructors can demonstrate the fundamentals in the classroom, assign homework, project, in-class activity or design laboratory. 
    more » « less